PSEUDO LINEAR ATTITUDE DETERMINATION OF SPINNING
SPACECRAFT

Richard R. Harman' and Itzhack Y. Bar-Itzhack”

This paper presents the overall mathematical model and results from pseudo linear
recursive estimators of attitude and rate for a spinning spacecraft. The measurements
considered are vector measurements obtained by sun-sensors, fixed head star trackers,
horizon sensors, and three axis magnetometers. Two filters are proposed for estimating
the attitude as well as the angular rate vector. One filter, called the g-Filter, yields the
attitude estimate as a quaternion estimate, and the other filter, called the D-Filter, yields
the estimated direction cosine matrix. Because the spacecraft is gyro-less, Euler’s
equation of angular motion of rigid bodies is used to enable the estimation of the angular
velocity. A simpler Markov model is suggested as a replacement for Euler’s equation in
the case where the vector measurements are obtained at high rates relative to the
spacecraft angular rate.

Extended Abstract

g-Filter Dynamics

The first dynamics equation we consider is the following Euler’s equation for the
angular motion of a spacecraft (SO). Itis [1, pp. 522, 523]
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where I is the SC inertia matrix, o is the angular velocity vector, h is the angular

momentum of the momentum wheels, and T is the external torque acting on the SC. The

symbol [ax] denotes the cross product matrix of the general vector a. Attitude is

represented by the attitude quaternion whose kinematic equation is [1, p. 512]
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In the g-filter we augment Egs. (1) and (2) to form the following dynamics

equation, which includes the noise terms
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The unbiased white-noise vector w, accounts for the inaccuracies in the modeling of the
SC angular dynamics, and w, is an unbiased white-noise vector that accounts for

modeling errors in the quaternion kinematics.
When the measurements come at a relatively high frequency we may be able to
replace the SC angular dynamics model in Eq. (4.a) with a simpler Markov model [2].

Consequently, Eq. (4.a) is replaced by the model
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where [1] is a diagonal matrix whose elements are the inverse of suitable time constants.

g-Filter Measurement Model
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rjis the reference vector corresponding to vector sensor j, and vy is white noise.

D-Filter Dynamics

Using Euler’s equation and assuming the spacecraft attitude is represented as a direction

cosine matrix, the dynamics take on the following form:
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where 47 = |:le dal d] ] ,d; T is the transpose of the jth column of the direction cosine

[d,x]
matrix, and @ =|[d, x] | where [d; ] is the skew symmetric matrix for jth column of the
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direction cosine matrix.

The D-Filter Measurement Model

For vector measurements, b, =[dg]d,, |d3r3]+vj’b where r is the corresponding

reference vector for the observation and d; is the ith column of the direction cosine

matrix. This equation can be rearranged to form the measurement model:
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Conclusion

Both the g-Filter and the D-Filter will be tested against simulated data and a comparison
will be made of the relative performance of each.
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